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For a class of Feynman graphs Qn (single-loop diagrams with all internal diagonals), the ^-space perturba­
tion Landau singularity manifolds are shown to be formally of the same structure as the Kallen HnW 
manifolds for the#-space axiomatic primitive domain. The boundary of the Landau manifold is then shown 
to be the (DANAD)' manifold. The relationship between the (DANAD)' and the Jost (DANAD) manifold 
is a precise generalization of what exists between the Fu and Fu surfaces of Kallen and Wightman. Since 
the (DANAD)' defines a natural domain of holomorphy, the axiomatic envelope of holomorphy cannot be 
expected to be continuable beyond (DANAD)'. This (DANAD)' result furnishes a specific conjecture to 
part of the envelope of holomorphy. 

1. INTRODUCTION 

ONE of the unsolved problems in the study of the 
analytical properties of the vacuum expectation 

values of the w-fold products of field operators (in short, 
the ^-point functions) is the determination of the en­
velope of holomorphy1 for n> 3 as a consequence of the 
postulates of local field theory.2 For our purpose, we 
shall only cite specifically the following three axioms: 
04*1) Lorentz invariance; (.4*2) no negative energy 
states; (4*3) local commutativity. The problem then 
breaks up into three stages. I t calls for the determina­
tion of the boundary of 

(i) the primitive domain Dn
+, as consequence of 4*1 

and 4 * 2 ; 
(ii) the union of the permuted domains Dn, as con­

sequence of 4 * 1 , 4*2, A*3; 
(iii) the envelope of holomorphy E(Dn) after perform­

ing the analytic completion over the results one gets 
in (ii). I ts nontriviality is reflected in its sweeping 
power (cf. Fig. 1). 

Our present knowledge on the primitive domain Dn
+ 

is quite satisfactory for all n. (For convenience to our 
discussion, this is briefly summarized in Sec. 2.) The 
permuted domains, while straightforward in principle, 
have not been fully worked out for w ^ 4 . Needless to 
say, the envelope of holomorphy, beyond the trivial 
case n=2, is presently known only for the case n = 3, 
which was the work of Kallen and Wightman.3 

Historically, for n=3, the establishment of the major 
part4 of the envelope of holomorphy was guided by a 

* Supported in part by the U. S. Office of Naval Research. 
1 For basic notions on the analytical functions of several com­

plex variables, see, e.g., A. S. Wightman, Lecture Notes (Les 
Houches, 1960), in Relations de Dispersions et Particules EU-
mentaires (Hermann & Cie., Paris, 1960), pp. 229-313. 

2 A. S. Wightman, Phys. Rev. 101, 860 (1956); and in Colloque 
stir les Pr obi ernes Mathtmatique de la Theorie Quantique des Champs 
(Lille, 1957). 

3 G. Kallen and A. S. Wightman, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Skrifter 1, No. 6 (1958). 

4 For the 3-point function domain, there is another piece of en­
velope of homomorphy, called the JF surface (see Ref. 3) which 
does not seem to be related to any perturbation domain. Pre­
sumably, there might also be analogs of the 5^ surfaces to appear 

knowledge of a certain perturbation singularity domain. 
More specifically, the following statements hold for the 
3-point function domain. 

(1) The leading boundary of the primitive domain 
Dz+ is given by the Fu surfaces 

2zu=r+ZhT&ii/r, r > 0 . (1) 

(2) The singularity domain of the triangle Feynman 
graph, when the internal masses are allowed to vary 
from 0 to oo, is bounded by the Fu surfaces 

2zu=—r—zkkZii/r, r>0. (2) 

(3) The leading boundary of the envelope of holo-
morophy is precisely given by the Fu surfaces. 

One is evidently struck here by the following two 
features for n=3. (A) There is a mysterious connection 
between the perturbation boundary and the axiomatic 
primitive boundary, namely that there exists a non-
trivial perturbation boundary which has formally the 
same structure as the boundary of the primitive domain, 
and that the only difference lies in a change of sign of 
certain parameters. (B) There is a mysterious co­
incidence between the perturbation boundary and the 
axiomatic envelope of holomorphy, namely that a 
major part of the envelope of holomorphy is precisely 
given by the perturbation boundary which fulfills the 
connection (A). I t is clear that the statement (A) puts 
a severe selection on the types of admissible perturbation 
boundaries. 

The question naturally arises as to whether the 
above statements (A) and (B) are purely accidental for 
n=3, or if there might actually be grounds for a deeper 
understanding of a general feature. 

In the present series of papers on the connection 
between the perturbation analyticity and the axiomatic 
analyticity, we shall establish that there exists a class of 
Feynman graphs {Qn} such that the above state-
in the higher w-point function domain. Such %n surfaces would 
again be beyond the reach of perturbation examples. We take the 
viewpoint here that the essential part of the 3-point function 
boundary was Fa' (which may be regarded as (DANAD)' of 
rank 2) rather than the $ surface. 
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Analytic Properties of Vacuum Expectation Values: <0 IA, <x, > An (xn)l 0> 

Lorentz In variance 

FIG. 1. Schematic summary of the 
steps involved in the study of the 
analyticity domains as a consequence 
of the postulates of local field theory. 
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merit (A) is valid for all n. The procedures adopted in 
the present paper will be as follows: 

(a) summary of the leading boundary of the primitive 
domain Dn

+; 
(b) determination of the perturbation (Landau) 

singularity manifolds for gn; 
(c) formal identification of the structure of the 

Landau singularity manifolds with that of the Kallen 
Ew (0-manifolds5-7; 

(d) determination of the boundary of the Landau 
singularity manifold through strict analogy with that of 
the boundary of the Sw(0 manifold; 

(e) establishment of statement (A) for all n by direct 
comparison between (d) and (a). 

Note. For ^=4 , the boundary BD^ is known as the 
Jost DANAD manifold,8,9 parameterized by a set of 
3X3 matrices D, A, N having their canonical forms 
(see Sec. 2). While it is known10 that for n^5, the 

5 G. Kallen and H. Wilhelmsson, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Skrifter 1, No. 9 (1959). 

6 G. Kallen, Lecture Notes (Les Houches, 1960) in Relation de 
dispersion et particules eUmentaries (Hermann & Cie, Paris, 
1960), p. 389. 

7 G. Kallen, Nucl. Phys. 25, 568 (1961). 
8 R. Jost, in Lectures on Field Theory and Many-Body Problem 

(Academic Press Inc., New York, 1961), p. 142. 
9 A. S. Wightman, J. Indian Math. Soc. 24, 625 (1960). 
10 Strictly speaking, the explicit form of DANAD is meant for 

matrix N (for rank 4 or higher) no longer has its 
canonical form of Nik—I—8ik, nevertheless, for the 
sake of terminology, we shall still choose to call the 
leading boundary of Dn+ as the DANAD manifold 
parameterized by (n— l)X(n— 1) matrices for general 
n, with the necessary modification of the form of N 
being understood. 

With this notation, it will be shown that the per­
turbation boundary for the g„ justifies the names of the 
(DANAD)' manifold. The relationship between the 
primed (DANAD)' manifold and the unprimed 
DANAD manifold for general n is a precise generaliza­
tion of that which exists between the Fki and the Fki 
surfaces for n=3. Of course, the Fki surfaces may be 
regarded as the rank-2 (DANAD)'manifold, a posteriori. 

This (DANAD)' result of the perturbation boundary 
is to be interpreted as follows: 

(1) It establishes the desired connection between the 
perturbation analyticity and the axiomatic analyticity. 

(2) It puts a definite upper bound to the axiomatic 
analyticity domains, namely, the envelope of holo-
morphy cannot be expected to be continued beyond 

cases n ^ 4. For n ^ 5, some peculiarity may arise due to lack 
of simultaneous normalizability of a set of (n— 1) light-like vec­
tors. See, e.g., A. S. Wightman, Ref. 9. For n = 5, see also A. C. 
Manoharan, J. Math. Phys. 3, 853 (1962); and N. H. Moller, 
Nucl. Phys. 35, 434 (1962). 
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TABLE I. Summary of the analyticity of the unpermuted vacuum 
expectation value (w-point function). It is a remarkable theorem* 
that the approaches from the regular points and from the singular 
points give the same boundary. 

Regular points Boundary points Singular points 

Wightman tubeb Jost DANADC Kallen Un(t) 
Manifoldd 

a Reference 7. 
b Reference 2. 
0 References 8 and 9. See note in text near the end of Sec. 1. 
d References 5 , 6 , and 7. 

(DANAD)' for configurations such that the (DANAD)' 
are relevant. 

(3) Finally, if the above statement (B) is to be valid 
at all for n>3, (DANAD)' would serve as a specific 
candidate. I t is hoped that such a (DANAD)' knowl­
edge might provide the needed impetus toward con­
structing an actual proof of part of the envelope of 
holomorphy. 

2. BOUNDARY OF THE PRIMITIVE DOMAIN Dn
+ 

The primitive analyticity domain of the unpermuted 
vacuum expectation value 

?TGV • - , r ^ 0 = <0|4i(*i)- • -4»(*»)|0>, (3) 

h=xk+1—xk, (4) 

is summarized in Table I. I t is known that the boundary 
can be obtained in two ways: 

(a) Approach to the boundary from the regularity side. 
This is done by making use of complex 4 vectors, 
Lorentz invariance, and the convexity of polyhedral 
cones. The end result is the Jost DANAD manifold.8,9 

This is a manifold parameterized by the following 
matrix equations. 

Z = D A N A D , (5) 

where all matrices are symmetric, D and N are real, 
Z complex, A complex only along the diagonals. Ex­
plicitly [the metric here is (1, 1, 1, —T)], 

Zki=-({Tc'ti) , k, l=ly- • •,(»—1) , (6a) 

Dki = dk5ki, dk>0, (6b) 

ImAki= — eic8ki, ek>0, (6c) 

Nik = nik(l — 8ik) , tiik>0. (6d) 

Note. For matrices of rank r ̂  3, by a scale transforma­
tion, N can be normalized to a special form 

Nik=l-dik. (7) 

(b) Approach to the boundary from the singularity side. 
This is done with the aid of the singularity manifold 
of the so-called generalized singular function An

+{z;a), 
which is defined formally as follows11: 

11 Such functions in various forms have been studied by many 
authors, e.g., A. S. Wightman and D. Hall, Phys. Rev. 99, 674 
(1955), also D. Hall, Ph.D. thesis, Princeton, 1956 (unpublished), 

(0\A1(x1)"'An(xn)\0) 

= i«r-i / . . . / J J dakiG(aki)An+(zki; akt), (8) 

with 
/ i \ 3(«-D r r n-l 

An
+(zki;aki) = l—J / • • • / JJ dpk 

X e « II Hpk)U 8(pkpi+akl), (9) 
k k^l 

where zki is the same as in (6a) and the "mass" parame­
ters aki are restricted in a region which is the inter­
section of the following. 

( - l ) r d e t ( P a n k r ) | a « | ^ 0 , l^r^n-1. (10) 

I t is known5,7 that An
+ (z;a) is an analytic function of 

Zki except on the following manifold, called the 
2n(t) manifold12: 

E n ( 0 = n ( H - £ ± e r * * ) = 0, (11) 

where t is a real parameter and ak are the eigenvalues 
of the matrix 

M=Za, (12) 
in which 

Z=\\zkl\\, (12a) 

a= | | a w | | (12b) 

are Gram matrices in the x space and p space, respec­
tively. The product in (11) is taken over all distinct 
sign configurations of dbov. Obviously, Zn(t) is a 
polynomial of degree 2n _ 1 in I. More explicit expressions 
of En (t) for n ^ 8 as well as the geometrical interpreta­
tion of the 3n(t) manifold (for 2 ^ ^ < 5 ) are given in 
Appendix A. 

I t has been established by Kallen7 that the above-
mentioned two approaches are equivalent. Kallen has 
shown that the leading boundary of the 3n (0 manifold 
is given by the \{n— \){n—2)-mass envelopes,13 and 
furthermore that such \(n— l)(n— 2)-mass envelopes 
can (for / ^ 4 ) be precisely written in the Z=DANAD 
form. Conversely, it can be easily shown that the 
DANAD manifold belongs to the E«(0 manifold.6-7 

Since an understanding of these statements for the 
En(0 manifold is crucial to our subsequent determina­
tion of the boundary of the perturbation Landau singu­
larity manifold, it is perhaps worthwhile to sketch 
briefly the necessary notions involved here. 

for n^3; for general n, see Refs. 5, 6, and 7. I. Nieminen, Nucl. 
Phys. 37, 250 (1962) studied A4+ in the lower dimensional Lorentz 
space. Similar results on the A4+ were independently derived by 
A. S. Wightman and A. C. T. Wu, 1962 (unpublished), using the 
technique of integration over the Lorentz group manifold, which 
technique was first applied by Wightman and Hall, ibid., for n ^ 3. 

12 It may also read as Im t r [ ± ( Z a ) ^ = 0. 
13 Strictly speaking, one is taking simultaneously the geometrical 

envelopes over t and the pertinent number of mass parameters. 
For simplicity of nomenclature, we shall only count here the num­
ber of mass parameters and refer to the envelopes as such. 
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n =2 

(trivial) 

n=3 

(well-known) 

n - 4 

present work 

n=5 

Perturbation Contribution to (Axiomatic) Envelope of Holomorphy 

100% (n=2) 

75% (n«3 ) 

?% (n*4) 

FIG. 2. The class of Feynman graphs {$n} and the previously known contribution to the envelope of holomorphy for n^3. 

The geometric envelope conditions on the EwOO 
manifold are given by7 

- d E n ( 0 / ^ = « , (13) 

dEn(t)/daik=§(aCik, (14) 

where co is just a complex scale factor. The coefficient 
dh is real if the indices (i,k) belong to the set of non-
vanishing parameters auc over which we are taking the 
geometric envelopes. Otherwise, Cap is complex.14 Now 
by a straightforward calculation, the set of Eqs. (11), 
(13), (14) can be combined to give the geometric en­
velopes of the Ew(0 manifold. The answer is extremely 
simple.7 

Z=CaC, (15) 

where Z, a are matrices in (12) and C is the matrix 
formed from the Ca in (14). 

Now there are the following cases: 

(1) Full-mass envelopes. This implies that all Cu are 
real, and hence Z real by (15). This is trivial. 

(2) Of-diagonal-mass envelope1**. Here, 0 ^ = 0 and 
the envelope is taken over all the remaining aw, $7*1). 
Thus, Chh are complex and Cki real. This is precisely 
the DANAD manifold, after a trivial scale transfor­
mation in (15).7 

(3) No-mass envelope. For our later discussions, it will 
be convenient to introduce here the notion of the no-
mass envelope, or total absence of the geometric en-

14 Clearly, there will be no reality restriction on the coefficient 
Cap if the corresponding parameter aap does not enter into the 
geometric envelope. 

15 In principle, there are of course other intermediate cases 
where not all diagonal masses are zero, but these are never rele­
vant. See Ref. 7. 

velope conditions. On a purely formal algebraic basis, 
we can still retain (13), (14) as the defining equations 
for the slopes. Here, of course, all Ca are complex. The 
same computation leading to (15) now gives formally 
the same 

Z=CaC (15a) 

now, for complex C. I t is clear that this is just another 
way of parameterizing the Ew (0 manifold itself. 

With this notion, the result of taking whatever sub-
mass geometric envelopes on the En (t) manifold is now 
reduced to a pure substitution scheme into (15a) 
according to the following prescriptions. 

(i) C e r e a l , 

if envelope condition includes the parameter # ^ ( ^ 0 ) ; 

(ii) Ca/3 = complex, 

if envelope is not taken over aap. In that case, aap takes 
on the extreme value, viz., aap=0 on the boundary. (16) 

We shall find in Sec. 5 that this powerful result7 on 
the 3n(t) manifold can be taken over almost word for 
word for our perturbation Landau singularity manifold. 

With the above preliminary, we now come to the dis­
cussion of the perturbation singularity. 

3. SPECIAL CLASS OF FEYNMAN GRAPHS {gn} 

We define {gw} to be the set of Feynman graphs with 
n external vertices, zero internal vertices, and \n{n— 1) 
internal lines, connecting every pair of vertices once 
and only once. See Fig. 2. The case n—2 is trivial. n=3 
has been fully discussed.3,16 

16 A. C. T. Wu, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 33, No. 3 (1961). 
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H4(qkqi;niij2) = H n dpa 
i<] 

1 
n % - E M ) , (17) 

where qu are a set of three independent external mo­
menta of g4. 

As usual, a set of Feynman parameters a#, i^j=0, 
1, 2, 3, aji=aij, can be introduced and normalized to 
J2^ij=l' Since we are not concerned here with the 
ultraviolet divergence problem, we assume that Eq. (17) 
is understood in the formal sense, and whenever neces­
sary, an appropriate number of operations with 
J^d/dntij2 may be applied to render the resulting ex­
pression meaningful. As far as the analyticity over the 
external variables (qk-qi) are concerned, this operation 

does not change the essential structure of the singu­
larity manifold. 

I t is well known that the singularity manifold of the 
function # 4 in (17) is embodied in the following set of 
algebraic equations of Landau.17 

(a) Momentum conservation at each vertex. (The 
number of independent vertex is n— 1.) 

qk=Zpik, ^ l , 2 5 3 ; i = 0 , " - , 3 . (18) 
i^k 

Note that qo has been eliminated from the problem 
by virtue of 

E<z<=o. (19) 
FIG. 3. The graph g4. 

Let the n vertices be labeled by indices i = 0, 1, 
2, • • •, (n—1). Let pij be the 4 momentum directed 
from vertices i to j . Call pji= —pij. Let m^ be the mass 
parameters associated with the line connecting (i,j). 
To be specific, let us concentrate on the graph 94. Once 
the result is known for w=4, extension to n=S is im­
mediate. The reason that perhaps one should pause at 
n—S is that in the 4-dimensional Lorentz space, the 
maximal rank of the Gram determinent is 4, and we 
prefer not to get involved at this time with the problem 
of linear dependence of a set of 4 vectors when n>5. 

4. LANDAU SINGULARITY MANIFOLD 
FOR THE GRAPH g4 

The momentum variables are assigned as shown in 
Fig. 3 in accordance with the prescription given above. 
I t is well known that the ^-space function corresponding 
to the graph Qn is given by an integral of a product of 
%n(n—l) propagators integrated over a set of 
| ( ^ ~ 1 ) (n—2) independent loop momenta. This last where 
number is also equal to the number of internal lines not 
connected to any one vertex. 

(b) Loop equations. [The number of independent 
loops for gn is \(n— \)(n—2).] 

2 ciijpij^O. 
closed 
path 

(20) 

(c) Internal mass shell, (for each internal line) 

pij*+tm?=0, i^j=0,--,3. (21) 

The above set of equations implicitly defines the singu­
larity manifold in the inner product space of 

Zki= — {qk-qi) . (22) 

We want to show that the perturbation singularity 
manifold given by the solutions to the Landau equations 
can be parameterized in a form which is very similar to 
the Kallen S(0 manifold. 

From Eqs. (18) and (20), one can readily solve for 
qic. Writing in the matrix form, we get 

q=Bap, 

(V 
£2 

lg8J 
> P= 

\PI] 
p2 

Ipv 
= 

poi 
p02 

^.podJ 

(23) 

(24) 

(25) 

(26) 

(27) 

Note that B is a symmetric matrix. Equation (23) is the 
vector solution to the Landau equations. The inner 
products of ph are now to be selected in "lengths" 

17 L. Landau, Zh. Eksperim. i Teor. Phys. 37, 62 (1959) [English 
Transl.: Soviet Phys.—JETP 10, 45 (I960)]. 

a= 
Txoi 0 0" 

0 a02 0 
. 0 0 (203. 

> 

and 

B = 

with 

'001+012+018 - f t * - 0 " ^ 
~012 002+012+023 —023 
— 013 —023 003+013+023-
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according to (21). Going into the space of invariants, 
we form the Gram matrix of (23), and get 

Z=BdB, (28) 
where 

Z=\\zkl\\y zkl=~(qk-qi), (29) 

< H M , &u=-{pk-pi), (30) 

pk=aokpk- (31) 

The set of mass parameters dki is related to m$ as 
follows: 

4 f c = a 0 f c W , &= 1,2,3, (32) 

&ki= —i(aki2mki2—aok
2mok2—aoi2moi2) ; &#=/^0. (33) 

Equations (28) gives the parametrized form of the per­
turbation singularity manifold for g4. For convenience, 
we shall refer to it as the Landau singularity manifold 
£n(z;d) = 0. 

5. DETERMINATION OF BOUNDARY OF THE LANDAU 
SINGULARITY MANIFOLD £n(z;a) 

One immediately recognizes that the Landau singu­
larity manifold £n (z; d) for g n in (28) is precisely of 
the same structure as the 3n(t) manifold in (15a). 
There are, however, the following modifications. While 
the aw in (15a) are real, the dik in (28) are, in general, 
complex, since for complex Z's, the Feynman parame­
ters ay will be complex on the Landau manifold. This 
implies that (28) be regarded as an extension of (15a) 
into the complex a space. However, the problem of the 
determination of the geometric envelopes of the mani­
fold (28), or (15a), is purely algebraic. The geometric 
envelope conditions for £n(z;d) over the real tmf is 
trivially translated into the "envelope" conditions over 
the complex <%. For example, 

d£ /d£ d£\ 
=aok2( +h Z ) , (34a) 

dmok2 \ddkk i>k ddki/ 

d£ d£ 
= - W , (34b) 

dniki2 ddki 

with the slopes of £n (z; d) formally given by 

-d<£/d/=co, (35a) 

d£/ddik=ha)Bik. (35b) 

I t follows then that the geometric envelope conditions 
on ntij2 imply the reality conditions on the Bik's and the 
a's. In particular, Kallen's result on the leading bound­
ary of the S n (0 manifold can now be taken over word for 
word. So the leading boundary of the Landau manifold 
£n (z; d) is given by the geometric envelopes over the 
nondiagonal masses. By the prescription stated in (16), 
this means that 

(i) the diagonal mass # ^ = 0, k=ly- • -,(n— 1); 
and the diagonal Buh are complex; (36a) 

(ii) the off-diagonal mass dki^O and the corre­
sponding BH are real. (36b) 

From (33), we now have 

dki=-±aki2?nki2<0. (37) 

With this substitution into (28), we get the leading 
boundary to £n(z;d): 

Z=-BAB, (38) 
where 

Aik=-dik(l-dik)^0 (39) 

and the reality structure of B is specified in (36). In 
particular, for ^ = 4 , (38) can be written as the following 
3X3 matrices. 

Z = - D A N A D , (40) 
where 

N=DAD=\\(l-dik)\\ (41a) 

A=D-1BD~l (41b) 

Djk= (AjkAjiAkr1)-1^, j^k^l= 1,2,3 cyclic. (41c) 

I t is clear that the matrices D, A, N in (40) have the 
canonical form (6). The manifold (40) will be referred 
to as the (DANAD)' manifold. For the rank-2 case, it 
gives, of course, the well-known result of the Fki 
surface (2). The tilde sign on A in (40) is a reminder of 
the following: The canonical form of A in (6) does not 
specify the signs of Aki versus, e.g., ReAkk- Thus one 
cannot preclude the possibility that the relative signs 
for A H in the (DANAD)' could be different from the 
corresponding signs of the An in the original primitive 
boundary DANAD. In fact, there are reasons to believe 
that sucr^a distinction of signs should exist.18 Hence the 
tilde on A in (40). 

6. CONCLUDING REMARKS 

Several remarks are perhaps in order: 

(1) I t should be noted that in the present paper, we 
are only interested in the formal structure of the singu­
larity manifold and its boundary. The question of rele­
vance criteria, namely, which piece of the boundary is 
relevant for which specific configuration of the Zki's, is 
left entirely untouched here. The specific parametriza-
tion we have adopted in (23) or (28) has its merit on 
the grounds that techniques have already been suffi­
ciently developed in the study of the boundary of the 
primitive domain Z)4

+ to enable handling of manifolds 

18 This is partially a relevancy argument: Writing out 
Z = DANAD, we have zn = 2di2[An(Ai2+Au)+A12Au'], etc. 
Since a change of relevance generally occurs at the intersection 
with the lower rank manifold, setting A u — 0 gives zu — 2di2A nA 12. 
Now the relevant part of the 3-point function boundary comes 
essentially when Re JSH>0. This implies Au Re ^4n>0 for the 
relevant part of DANAD. A similar computation for the 
Z = — DANAD shows that the requirement is now An (Re An) <0 . 
Furthermore, an inspection on the explicit form of B in (26) also 
suggests Au(R.e Akk) <0 . 

file:///ddkk
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X2( £ £3 

X3 

(a) 

FIG. 4. A kind of duality: (a) chain-like vectors in x space; 
(b) cone-like vectors in p space. 

precisely of the DANAD variety.7-19 The fact that the 
perturbation boundary turns out exactly of the 
Z= —DANAD form has rendered it unnecessary to 
attack the Landau equations by an explicit process of 
elimination of the Feynman parameters a#. In fact, a 
brute-force approach to graphs like £4 would be quite 
hopeless. 

(2) Formally, it might be of interest to note that 
graphs with internal vertices may be regarded as 
degenerate cases of {Qn} when one or more external 
momenta are allowed to shrink to zero. For example, the 
Mercedes diagram considered by Kallen and Toll20 may 
be looked upon as the limit of the graph g4, e.g., as 
g 3 - > 0 . 

(3) The situation for the p- space domain itself in the 
nonperturbative approach is much less transparent. 
While it is known that, for n=3, the ^-space domain 
without mass spectrum coincides with the x-space 
domain,3 in general this is not the case21 (#-space 
domain is larger). A more modest question would be to 
determine the domain of the graph g4 with the inclusion 
of mass spectral conditions. Such a problem for the 
3-point function has been studied by W. Brown.22 

(4) Finally, we attempt to give a geometrical picture 
of the underlying difference between the x-space 
DANAD and the ^-space (DANAD)'. For the original 
#-space primitive domain, one works with the (un-
permuted) vacuum expectation values (3). 

On the ff-space DANAD, one has6'9 

(42) 

where f &= £&—^, rjk are light-like on the boundary and 
(for rank less than 4), — ( w ^ ) ? (k^l) may be normal­
ized to 1 by absorbing the scale factors in D and A 
[cf. Eq. (41)]. Thus -(vk'Vi) is the matrix N of (7). 
Since the f *. are difference vectors between consecutive 
points XkS, both £& and 17*. may be regarded, so to speak, 
as nearest-neighbor (or chain-like) displacements. Then, 
obviously, the displacements between the next-nearest 
neighbors are given as the sum of nearest-neighbor dis-

19 J. S. Toll, in Lectures on Field Theory and Many-Body Problem 
(Academic Press Inc., New York, 1961), p. 147. 

20 G. Kallen and J. S. Toll, Helv. Phys. Acta 33, 753 (1960). 
21 See references cited on p. 448 of Ref. 6. 
22 W. S. Brown, Ph.D. thesis, Princeton, 1961 (unpublished); 

J. Math. Phys. 3, 221 (1962). 

placements. See Fig. 4(a). Thus, for example, one has 

-(v*-m)=K-h*+m)*+rii?+vfl • (43) 
On the other hand, for the ^-space perturbation domain, 
the set of vectors pk (i.e., poic) that comes into play has 
the cone-like structure, namely all vectors being pro­
jected from a common vertex; see Fig. 4(b). This 
implies that every third vector is given as the difference 
of two vectors, e.g., 

- (pk-p,)=-K- (pk-piy+pt+pti. (44) 
Thus there is a net difference in sign between the off-
diagonal elements (of the matrix N, practically) on the 
right-hand sides of (43) and (44). One might thus 
visualize the situation as follows: 

(i) The x-space DANAD is defined with respect to a 
set of chain-like vectors rjk'. boundary of primitive 
domain. 

(ii) The ^-space DANAD is defined with respect to 
a set of cone-like vectors pk: boundary of perturbation 
domain without mass spectral condition. 

(iii) (DANAD)' is the result of translating ^>-space 
DANAD back into the canonical language of the 
#-space DANAD, namely with D, A, N all in their 
canonical form. We have seen that (DANAD)' should 
read as Z= - D A N A D . 

If one visualizes the postulate of local commutativity 
as having the power to reverse the links in the primitive 
chain, then it would be extremely interesting, should 
the following conjecture be true23: The envelope of 
holomorphy of the union of permuted domains (each 
being bounded by a DANAD variety corresponding to 
different sets of chain-like vectors) is a domain pri­
marily4 bounded by the cone-like DANAD. The result 
of this paper shows that the cone-like DANAD, viz., 
the (DANAD)', indeed defines a natural domain of 
holomorphy. 
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APPENDIX A 

The function S»(0 defined in Eq. (11) may be 
written more explicitly as follows: For convenience, 
write t = <To*. 

Case (a) n=2 ( 

Case (b) w = 3 

trivial) 

E2(<r) = 

B,z(cr) = \ 

1 1 

(<7O,<7i,0-2) 

(Al) 

- (A2) 
23 Cf. R. F. Streater, Nuovo Cimento 15, 937 (1960). 
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where 

\(afi,y)^=a2+(32+y2-2a!3-2l3y-2ya. (A3) 

Geometrically, one may visualize that in the cr* space 

-H<T0,<xha2) = 16A2((7oVi%^2*) , (A4) 

where A(a,b,c) denotes the area of a triangle with side 
lengths a,b,c. In this picture, the vanishing of (A2) 
implies that the triangle (ov,0"i*,0V) collapses. There 
are two possibilities to collapse the triangle: (i) One 
vertex of the triangle falls on the base; or (ii) one side 
(ov) of the triangle shrinks to zero. I t can be easily 
verified that possibility (i) yields the Fa surface and 
(ii) yields the 51 surface, for the boundary of the 3-point 
function primitive domain Z)3

+. 

Case (c) n = 4: 

Ei(a) = K((To,ak)-K( — <To,<Tk) , 
where 

K(a) = 
0V 

i 
01' 

oV 

ov 
i 

OV 
i 

ov 

0-2 

OS 

0"O 

0 V OV 0V 

oV 
oV 

Geometrically, again in the <r* space, we have 

16o2-- iST(-<r0 ,<r t) , 

(A5) 

(A6) 

(A7) 

where O denotes the area of a cyclic quadrilateral24 

with side lengths (0-0,0-1,0-2,0-3). I t is evident that 

S 3 (0-0,0-1,0-2) = K (o-0,0-10-2,0) = [ S 4 (0-0,0-1,0-2,0)]* ( A 8 ) 

Case (d) n = 5 
Contrary to intuition, 25(0") is not expressible in 

terms of 5X5 determinants. Instead, it will be de­
generate cases of 8X8 determinants. 

24 See, e.g., G. N. Watson, Theory of Bessel Functions (Cam­
bridge University Press, New York, 1944), 2nd ed. p. 414. A 
cyclic quadrilateral is one whose four vertices lie on a circle; given 
the lengths of four sides, it corresponds to the quadrilateral with 
maximum area. I wish to thank T. T. Wu for a remark on this 
last statement. 

£5(0-0,' * * ,0-4) = [Esfco, * ' ' ,0-4,0,0,0)]1/8 

= &1&2 I <r6=<r6=(r7«=0 (A9) 
and 

where25 

Qi(<r) = 

oV 
oV 
oV 
OV 
<74* 

0-5* 

W 
0-0* 

0-3* 

0"2* 

0*5* 

O-4* 

&8 

0"2* 

O V 

O"0* 
1 

ov 
0V 
0-7* 

(«r) = 

0V 

0-2* 

ov 
0V 
0-7* 

A 

0-6 2 

no* 

1 
0-42 

0-5* 

oV 
0-7* 

0"o* 

ov 

M 

0-5* 
1 

OV 
O-7* 

1 
0"62 

1 

ov 
OV 

0*6* 

O-7* 

O-4* 

0"5* 

0-2* 

0-3* 

i 
O-7 a 

cr6* 

0-5* 

0-4* 
1 

0-32 

0*2* 

(A10) 

(AH) 

OV 0"72 OV 0"52 OV OV OV 0 V 

O-7* 0-6* 0"5* 0V 0"32 0"2* 0"1* 0 V 

The next 8 O's, namely fl2, * • * ,^9, are gotten by inverting 
the sign of one single ov —^ — 0-;*, from ^i(o-), i = 0, • • • ,7. 
Finally, the remaining 7 O's, namely flio, • • • ,S2i6 are 
gotten by inverting the signs of a pair of cr*'s from 12i, 
specifically o-0*-^— oV together with one additional 
o v - ^ —-ov at a time, (k^O). This completes the char­
acterization for E s ^ ) . 

With (A10) for n = 8, all previous expressions for 
Sn(o") for ^ < 8 may now be regarded as degenerate cases 
of (A10) by inserting appropriate zero entries in (A10). 

The precise geometrical meaning for the quantities 
like (All) for rank higher than 4 is, unfortunately, not 
known to the present author. 

25 Clearly, each Uk (a) contains eight factors of (2d=o-fc*). Sym­
bolically, we have for fii 

Oi = (all+) (0123+) (0145+) (0167+) 
X (0246+) (0257+) (0347+) (0356+), 

where in the last seven factors, the eight rfco- '̂s break up into 
four + ' s and four —'s and we have written out four of the indices 
which have the plus signs. One notes here that the strange com­
bination of those indices in triplets (besides 0) happens to coin­
cide with the multiplication table of the octonian algebra. See, 
e.g., A. Pais, Phys. Rev. Letters 7, 291 (1961). It is not clear 
whether there is anything deep about such objects as the 8X8 
determinant d . Our O2 is gotten from fti by letting co* —> — <ro*, 
a discrete operation which is also discussed by Pais in an entirely 
different context. 


